Applications of the Operator $r\Phi_s$ in q-identities

Husam L. Saad*, Hassan J. Hassan
Department of Mathematics, College of Science, Basrah University, Basrah, Iraq
* Corresponding Author Husam L. Saad, E-mail: hus6274@hotmail.com

Doi:10.29072/basjs.202112

Abstract

In this paper, we set up the general operator $r\Phi_s$, and then we find some of its operator identities that will be used to generalize some well-known q-identities, such as Cauchy identity, Heine’s transformation formula and the q-Pfaff-Saalschütz summation formula. By giving special values to the parameters in the obtained identities, some new results are achieved and/or others are recovered.
1. Introduction

We adopt the following notations and terminology in [8]. We assume that \(0 < q < 1\). The \(q\)-shifted factorial is given by

\[
(a; q)_0 = 1, \quad (a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (a; q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k).
\]

and the multiple \(q\)-shifted factorials is given by

\[
(a_1, a_2, \ldots, a_r; q)_m = (a_1; q)_m(a_2; q)_m \cdots (a_r; q)_m.
\]

where \(m \in \mathbb{Z}\) or \(\infty\).

The basic hypergeometric series \(r\phi_s\) is defined as follows [8]:

\[
r\phi_s \left(\begin{array}{c} a_1, \ldots, a_r \\ b_1, \ldots, b_s \\ q, x \end{array} \right) = \sum_{k=0}^{\infty} \frac{(a_1, \ldots, a_r; q)_k}{(b_1, \ldots, b_s; q)_k} \left[\frac{(-1)^k q^{k(k-1)}}{2} \right]^{1+s-r} x^k,
\]

where \(r, s \in \mathbb{N}\); \(a_1, \ldots, a_r, b_1, \ldots, b_s \in \mathbb{C}\); and none of the denominator factors evaluate to zero. The above series is absolutely convergent for all \(x \in \mathbb{C}\) if \(r < s + 1\), for \(|x| < 1\) if \(r = s + 1\) and for \(x = 0\) if \(r > s + 1\).

The \(q\)-binomial coefficient is presented as follows [8]:

\[
[n]_k = \begin{cases}
\frac{(q; q)_n}{(q; q)_k(q; q)_{n-k}}, & \text{if } 0 \leq k \leq n; \\
0, & \text{otherwise},
\end{cases}
\]

where \(n, k\) are nonnegative integers.

In this paper, we will repeatedly use the following equations [8]:

\[
(b; q)_{-k} = \frac{(-1)^k q^{k(k-1)/2} (q/b)^k}{(q/b; q)_k}.
\]

\[
(b; q)_{n-k} = \frac{(b; q)_n}{(q^{1-n}/b; q)_k} (-1)^k q^{k(n-k)/2} \left(\frac{q}{b} \right)^k.
\]

\[
(q^{-n}; q)_k = \frac{(q; q)_n}{(q; q)_{n-k}} (-1)^k q^{k(n-k)/2}.
\]

\[
(bq^{-n}; q)_{\infty} = (-1)^n b^n q^{(n+1)/2} (q/b; q)_n (b; q)_{\infty}.
\]

The Cauchy identity is given by:

\[
\sum_{n=0}^{\infty} \frac{(a; q)_n}{(q; q)_n} x^n = \frac{(ax; q)_\infty}{(x; q)_\infty}, \quad |x| < 1.
\]
The special case of the Cauchy identity (1.5), given by Euler, is [8]

\[
\sum_{n=0}^{\infty} \frac{(-1)^n q^{(n)}_q}{(q;q)_n} x^n = (x; q)_\infty.
\]

(1.6)

The q-Chu-Vandermonde’s identities are [8]

\[
2\phi_1\left(\frac{q^{-n}, b}{c, c q^n/b}; q, c q^n/b\right) = \frac{(c/b; q)_n}{(c; q)_n}, \quad |c/b| < 1.
\]

(1.7)

\[
2\phi_1\left(\frac{q^{-n}, b}{c, q}; q, q\right) = \frac{(c/b; q)_n}{(c; q)_n} b^n.
\]

(1.8)

The q-Pfaff-Saalschütz sum is given by [8]

\[
3\phi_2\left(\frac{q^{-n}, a, b}{c, q^{1-n} a b/c}; q, q\right) = \frac{(c/a, c/b; q)_n}{(c, c/a b; q)_n}.
\]

(1.9)

The q-Gauss summation formula is given by [8]

\[
2\phi_1\left(\frac{a, b}{c, q/c a b}; q, q/c a b\right) = \frac{(c/a, c/b; q)_\infty}{(c, c/a b; q)_\infty}, \quad \left|\frac{c}{a b}\right| < 1.
\]

(1.10)

Heine’s transformation formula is given by [8]

\[
2\phi_1\left(\frac{a, b}{c, z}; q, z\right) = \frac{(c/b, z b; q)_\infty}{(c, z; q)_\infty} 2\phi_1\left(\frac{a b z/c, b}{z b, q, c/b} ; q, c/b\right).
\]

(1.11)

where \(\max\{\left|a\right|, \left|c/b\right|\} < 1\).

The transformation formula [8, Appendix III, equation (III.9)] is given by:

\[
3\phi_2\left(\frac{a, b, c}{d, e}; q, d e/abc\right) = \frac{(e/a, d e/b c; q)_\infty}{(e, d e/abc; q)_\infty} 3\phi_2\left(\frac{a, d/b, d/c}{d, d e/b c; q}_\infty\right).
\]

(1.12)

Definition 1.1 ([2], [3], [10]). The \(D_q\) operator or the q-derivative is defined as follows:

\[
D_q[f(a)] = \frac{f(a) - f(aq)}{a}.
\]

(1.13)

Theorem 1.2 ([2], [10]). For \(n \geq 0\), we have

\[
D_q^n[f(a) g(a)] = \sum_{k=0}^{n} \binom{n}{k} q^{k(n-k)} D_q^k[f(a)] D_q^{n-k}[g(a q^k)].
\]

(1.14)

Theorem 1.3 ([2], [16]). Let \(D_q\) be defined as in (1.13), then
In 2010, Fang [5] defined the finite operator as follows:

Definition 1.4 [5]. The \(q \)-exponential operator \(_1 \Phi_0 \left(q^{-M} \right) \) is defined by:

\[
_1 \Phi_0 \left(q^{-M} \right) = \sum_{k=0}^{M} \frac{(q^{-M}; q)_k}{(q; q)_k} (cD_q)^k.
\]

Fang used the \(q \)-exponential operator \(_1 \Phi_0 \left(q^{-M} \right) \) to prove the following result:

Theorem 1.5 [5]. Let \(_1 \Phi_0 \left(q^{-M} \right) \) be defined as in (1.16), then

\[
_3 \Phi_2 \left(\frac{q^{-M}, c_1}{d_2}, xd_1; q, cD_2 \right) = \frac{(cD_2, q)_M}{(cD_1, q)_M} \frac{d_2}{d_1}^M \frac{cD_1, q^{-M}, xc_1; q, cD_1}{cD_2 q^{-M}, xc_1; q, cD_2}.
\]

In 2010, Zhang and Yang [15] constructed the finite \(q \)-Exponential Operator \(2E_1 \left[q^{-N} ; W ; q, cD_q \right] \) with two parameters as follows:

Definition 1.6 [15]. The finite \(q \)-Exponential Operator \(2E_1 \left[q^{-N} ; W ; q, cD_q \right] \) is defined by

\[
2E_1 \left[q^{-N} ; W ; q, cD_q \right] = \sum_{n=0}^{N} \frac{(q^{-N}, W; q)_n}{(q, v; q)_n} (cD_q)^n.
\]

Zhang and Yang used the operator \(2E_1 \left[q^{-N} ; W ; q, cD_q \right] \) to get a generalization of \(q \)-Chu-Vandermond formula (1.8) as follows:

Theorem 1.7 [15]. Let \(2E_1 \left[q^{-N} ; W ; q, cD_q \right] \) be defined as in (1.18), then

\[
\sum_{n=0}^{N} \sum_{k=0}^{n} (q^{-n}, a; q)_m (q^{-N}, W; q)_k \frac{c^k q^{m+mk}}{(q, c; q)_m (q, v; q)_k} = a^n W^n \left(\frac{c/a; q}_n \frac{v/w; q}_N \right) \frac{4 \Phi_2 \left(\frac{q^{-N}, q^{1-n}, aq}{c, c} \frac{aq^{1-n}}{w^{1-n}} ; q, \frac{c}{v} \right)}{c, c, w, v}.
\]
Also, by using the operator $\mathcal{E}_1 \left[q^{-N} \frac{v^{-1}}{v}; q, c D_q \right]$, they obtained the following result:

$$\phi_1 \left(\frac{q^{-N} w}{v}; q, c \right) = w^N \frac{(v/w; q)_N}{(v; q)_N} \phi_1 \left(\frac{q^{-N} w}{c}; q, \frac{c}{v} \right)$$

(1.20)

In 2016, Li-Tan [9] constructed the generalized q-exponential operator $T \left[\frac{u,v}{w} | q; c D_q \right]$ with three parameters as follows:

Definition 1.8 [9]. The generalized q-exponential operator $T \left[\frac{u,v}{w} | q; c D_q \right]$ is defined by

$$T \left[\frac{u,v}{w} | q; c D_q \right] = \sum_{n=0}^{\infty} \frac{(u,v; q)_n}{(q,w; q)_n} (c D_q)^n.$$

(1.21)

Li and Tan used the generalized q-exponential operator $T \left[\frac{u,v}{w} | q; c D_q \right]$ to get a generalization for q-Chu-Vandermonde sum (1.8), as follows:

Theorem 1.9 [9]. Let $T \left[\frac{u,v}{w} | q; c D_q \right]$ be defined as in (1.21), then

$$\sum_{k=0}^{n} \frac{(q^{-n}, x; q)_k}{(q,c; q)_k} q^k 2 \phi_1 \left[\frac{u,v}{w} ; q, t q^k \right] = x^n \frac{(c/x; q)_n}{(c; q)_n} \sum_{i,k \geq 0} \frac{(u,v; q)_{i+k}}{(q; q)_{i+k}} \frac{(q^{-1}/c, qx/c; q)_k}{(q, q^{-1}x/c; q)_k} t^{i+k} \left(\frac{q}{c} \right)^i.$$

(1.22)

The Cauchy polynomials $P_n(x, y)$ is defined by [7]

$$P_n(x, y) = \begin{cases} (x-y)(x-qy)(x-q^2y) \cdots (x-q^{n-1}y), & \text{if } n > 0; \\ 1, & \text{if } n = 0. \end{cases}$$

(1.23)

In 1983, Goulden and Jackson [7] gave the following identity:

$$P_n(x, y) = \sum_{k=0}^{n} \left[\frac{n}{k} \right] (-1)^k q^k y^k x^{n-k}.$$

The generating function for Cauchy polynomials $P_n(x, y)$ [1] is

$$\sum_{k=0}^{\infty} P_n(x, y) \frac{t^n}{(q; q)_n} = \frac{(yt; q)_\infty}{(xt; q)_\infty}, \quad |xt| < 1.$$

(1.24)

In 2003, Chen et al [1] introduced the bivariate Rogers-Szegö polynomials $h_n(x,y|q)$ as:

$$h_n(x,y|q) = \sum_{k=0}^{n} \left[\frac{n}{k} \right] P_k(x,y),$$

where $P_k(x,y)$ is defined as in (1.23). In 2010, Saad and Sukhi [11] gave another formula for the bivariate Rogers-Szegö polynomials $h_n(x,y|q)$ as:

$$h_n(x,y|q) = \sum_{k=0}^{n} \left[\frac{n}{k} \right] (y; q)_k x^{n-k}.$$

The generating function for the bivariate Rogers-Szegö polynomials $h_n(x,y|q)$ is [1]
The generalized Al-Salam–Carlitz q-polynomials $\phi_n^{(a,b)}(x,y)$ was introduced in 2020 by Srivastava and Arjika [14] as
\[
\phi_n^{(a,b)}(x,y) = \sum_{k=0}^{n} \frac{[n]_k!}{[k]_k!} \frac{(a_1, a_2, \cdots, a_{s+1}; q)_k}{(b_1, b_2, \cdots, b_s; q)_k} x^k y^{n-k},
\]
which has the following generating function:
\[
\sum_{n=0}^{\infty} \phi_n^{(a,b)}(x,y) \frac{t^n}{(q; q)_n} = \frac{1}{(yt; q)_\infty} \sum_{s+1} \Phi_s \left(\begin{array}{c} a_1, a_2, \cdots, a_{s+1} \\ b_1, b_2, \cdots, b_s \end{array}; q, xt \right),
\]
where $\max[|xt|, |yt|] < 1$.

The paper is organized as follows. In section 2, we built the general operator $\Phi_s \left(\begin{array}{c} a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array}; q, cD_q \right)$. We also provide some operator identities, which will be used in section 3. In section 3, we generalize some well-known q-identities, such as Cauchy identity, Heine’s transformation formula and the q-Pfaff-Saalschütz summation formula. Then, in these generalizations, we may assign the parameters unique values, we get several results.

2. The General Operator Φ_s and its Identities

In this section, we establish the general operator $\Phi_s \left(\begin{array}{c} a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array}; q, cD_q \right)$. We also give some identities to this operator, which will be used in the next section.

Definition 2.1 We define the generalized q-operator Φ_s as follows:
\[
\Phi_s \left(\begin{array}{c} a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array}; q, cD_q \right) = \sum_{n=0}^{\infty} \frac{W_n}{(q; q)_n} \left(-1 \right)^n q \left(\frac{n}{2} \right) \left(cD_q \right)^n,
\]
where $W_n = \frac{(a_1, \cdots, a_r; q)_n}{(b_1, \cdots, b_s; q)_n}$.

Some special values may be given to the general q-operator Φ_s to obtain several previously specified operators, as follows:

- Setting $r = 1$, $s = 0$, $a_1 = 0$ and $c = b$, we get on the exponential operator $T(bD_q)$ defined by Chen and Liu [2] in 1997.
- If $r = 1, s = 0$ and $a_1 = b$, we get on the Cauchy operator $\Phi_0 \left(b; q, cD_q \right)$ which was defined by Fang[4] in 2008.
• If \(r = 1, s = 0 \) and \(a_1 = q^{-M} \), we get on the finite operator
\(1 \Phi_0 \left(q^{-M} ; q, cD_q \right) \)

• If \(r = 2, s = 1 \), \(a_1 = q^{-N} \), \(a_2 = w \) and \(b_1 = v \), we get on the
finite exponential operator
\(2 \mathcal{E}_1 \left[q^{-N}, w; q, cD_q \right] \) with two parameters

• If \(r = s = 0 \), we get on the \(q \)-exponential operator \(R(bDq) \) which is defined by

• Setting \(r = s + 1 \), we get the generalized \(q \)-operator \(F(a_0, \ldots, a_s; b_1, \ldots, b_s; cD_q) \)
described by Fang [6] in 2014 and the homogeneous \(q \)-difference
operator \(\mathbb{T}(a, b, cD_q) \) specified by Srivastava and Arjika [14] in 2020.

• If \(r = 2, s = 1 \), \(a_1 = u, a_2 = v \) and \(b_1 = w \), we get on the
generalized exponential operator
\(\mathcal{T} \left[u, v; q, cD_q \right] \) with three parameters

• Setting \(r = 3, s = 2 \), \(a_1 = a, a_2 = b, a_3 = c \), \(b_1 = d, b_2 = e \) and \(c = f \), we get the
operator \(\phi \left(a, b, c, d, e, cD_q \right) \) with five parameters

The following operator identities will be derived using \(q \)-Leibniz formula (1.14):

Theorem 2.2 Let
\(r \Phi_s \left(a_1, \ldots, a_r; b_1, \ldots, b_s ; q, cD_q \right) \) be defined as in (2.1), then

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{W_{n+k}}{(q;q)_n} \left(\frac{v/t, aw; q}{q, av; q} \right)_k \left(\frac{u/w, q}{q, au; q} \right)_n \left(-1 \right)^{n+k} q^{\frac{n+k}{2}} \right]^{1+s-r} (cw)^n (ct)^k
\]

provided that \(\max(\left| at \right|, \left| aw \right|) < 1 \).

Proof.

\[
\sum_{n=0}^{\infty} \frac{W_n}{(q;q)_n} \left(-1 \right)^n q^{\frac{n}{2}} c^n q^n (ct)^k
\]

(by using (2.1))
Setting in equation (2.2), we get the following corollary:

Corollary 2.2.1 Let $r\Phi_s\left(\begin{array}{c}a_1,\ldots,a_r \\ b_1,\ldots,b_s \end{array}; q, cD_q\right)$ be defined as in (2.1), then

$$r\Phi_s\left(\begin{array}{c}a_1,\ldots,a_r \\ b_1,\ldots,b_s ; q, cD_q\end{array}\right)\left(\frac{(av;q)_\infty}{(at;q)_\infty}\right) = \frac{(av;q)_\infty}{(at;q)_\infty}\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{W_{n+k}}{(q;q)_n} \left(\frac{(v/t, aw;q)_k}{(at, aw; q)_k}\right) \left(\frac{(u/w; q)_n}{(au; q_n)^{n+k}}\right)\left[(-1)^{n+k}q^{\frac{n+k}{2}}\right]^{1+s-r} (cw)^n (ct)^k,$$

where $\max\{|at|, |aw|\} < 1$.

In view of symmetry of t and w on the left hand side of equation (2.4), we get the following formula:

Theorem 2.3

$$\sum_{n,k \geq 0} \frac{W_{n+k}}{(q;q)_n} \left[(-1)^{n+k}q^{\frac{n+k}{2}}\right]^{1+s-r} \frac{(v/t, aw; q)_k}{(q, aw; q)_k} (cw)^n (ct)^k$$

$$= \sum_{n,k \geq 0} \frac{W_{n+k}}{(q;q)_n} \left[(-1)^{n+k}q^{\frac{n+k}{2}}\right]^{1+s-r} \frac{(v/w, at; q)_k}{(q, av; q)_k} (ct)^n (cw)^k. \quad (2.5)$$

- If $r = 1, s = 0$ in equation (2.5) and then using (1.5), we get Hall’s transformation (1.12).
- If $r = 1, s = 0$ and $a_1 = q^{-N}$ in equation (2.5), then using equations (1.4) and (1.5), we get Theorem 3.5. obtained by Fang [5] (equation (1.17)).

Theorem 2.4 Let $r\Phi_s\left(\begin{array}{c}a_1,\ldots,a_r \\ b_1,\ldots,b_s ; q, cD_q\end{array}\right)$ be defined as in (2.1), then

$$r\Phi_s\left(\begin{array}{c}a_1,\ldots,a_r \\ b_1,\ldots,b_s ; q, cD_q\end{array}\right)\left(\frac{a^n (ax;q)_\infty}{(ay;q)_\infty}\right) = a^n \left(\frac{(ax;q)_\infty}{(ay;q)_\infty}\right)$$
Proof.

\[
\begin{align*}
\Phi_s \left(a_1, \ldots, a_r, b_1, \ldots, b_s ; q, cD_q \right) \\
= \sum_{i=0}^{\infty} \frac{W_i}{(q; q)_i} \left[(-1)^i q^{i/2} \right]^{1+s-r} c^i D_q \left\{ a^n \frac{(ax; q)^{\infty}}{(ay; q)^{\infty}} \right\} \\
= \sum_{i=0}^{\infty} \frac{W_i}{(q; q)_i} \times \left[(-1)^i q^{i/2} \right]^{1+s-r} c^i \\
\times \sum_{j=0}^{\infty} q^{j^2-ij} \left\{ \frac{(axq^j; q)^{\infty}}{(ayq^j; q)^{\infty}} \right\} \\
= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{W_i}{(q; q)_i} \left[(-1)^i q^{i/2} \right]^{1+s-r} q^{j^2-ij} \left\{ \frac{(axq^j; q)^{\infty}}{(ayq^j; q)^{\infty}} \right\} \\
= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{W_{i+j}}{(q; q)_i} \left[(-1)^i q^{i/2} \right]^{1+s-r} q^{-ij} \left\{ \frac{(axq^{i+j}; q)^{\infty}}{(ayq^j; q)^{\infty}} \right\} \\
= a^n \frac{(ax; q)^{\infty}}{(ay; q)^{\infty}} \sum_{i,j=0}^{\infty} \frac{W_{i+j}}{(q; q)_i} \left[(-1)^i q^{i+j} \left(\frac{axq^{i+j}}{ayq^j} \right) \right]^{1+s-r} \left\{ \frac{(x/y; q)_i (axq^{i+j}; q)^{\infty}}{(ayq^j; q)^{\infty}} \right\} \\
= a^n \frac{(ax; q)^{\infty}}{(ay; q)^{\infty}} \sum_{i,j=0}^{\infty} \frac{W_{i+j}}{(q; q)_i} \left[(-1)^i j q^{i+j} \left(\frac{axq^{i+j}}{ayq^j} \right) \right]^{1+s-r} \left\{ \frac{c}{a} \right\}^j, |ay| < 1. \quad (2.6)
\end{align*}
\]

Setting \(x = 0 \) in equation (2.6), we get the following corollary:

Corollary 2 Let \(\Phi_s \left(a_1, \ldots, a_r, b_1, \ldots, b_s ; q, cD_q \right) \) be defined as in (2.1), then

\[
\begin{align*}
\Phi_s \left(a_1, \ldots, a_r, b_1, \ldots, b_s ; q, cD_q \right) \\
= a^n \frac{(ax; q)^{\infty}}{(ay; q)^{\infty}} \sum_{i,j=0}^{\infty} \frac{W_{i+j}}{(q; q)_i} \left[(-1)^i q^{i+j} \left(\frac{axq^{i+j}}{ayq^j} \right) \right]^{1+s-r} \left\{ \frac{c}{a} \right\}^j, |ay| < 1. \quad (2.7)
\end{align*}
\]

3. Applications in q-Identities

In this section, we aim to generalize some well-known q-identities such as Cauchy identity.
Heine’s transformation of \({}_2\phi_1 \) series and \(q \)-Pfaff-Saalschütz sum by using the general operator \({}_r\Phi_s \). Then, some special results are obtained from these generalizations, some new ones and others are known.

3.1 Generalization of Cauchy Identity

Theorem 3.1 (Generalization of Cauchy identity). Let Cauchy identity be defined as in (1.5), then

\[
\sum_{k=0}^{\infty} \frac{(a; q)_k}{(q; q)_k} x^k \sum_{i,j \geq 0} \frac{W_{i+j} (b/c; q)_i (xb; q)_{i+j}}{(q; q)_i (xb; q)_{i+j}} \left[(-1)^{i+j} q^{i+j/2} \right]^{1+s-r} (xc; q)_j \left[k \right] (dc)^i \left(\frac{d}{x} \right)^j \\
= \frac{(xa; q)_\infty}{(x; q)_\infty} \sum_{i,j \geq 0} \frac{W_{i+j} (b/c; q)_i (xb; q)_{i+j}}{(q; q)_i (xb; q)_{i+j}} \left[(-1)^{i+j} q^{i+j/2} \right]^{1+s-r} \frac{(a, xc; q)_j}{(q, xa; q)_j} (dc)^i d^j.
\] (3.1)

Proof. Multiply Cauchy identity by \(\frac{(xb; q)_\infty}{(xc; q)_\infty} \).

\[
\sum_{k=0}^{\infty} \frac{(a; q)_k}{(q; q)_k} x^k \frac{(xb; q)_\infty}{(xc; q)_\infty} = \frac{(ax, xb; q)_\infty}{(x, xc; q)_\infty}.
\] (3.2)

Applying the operator \({}_r\Phi_s \left(b_1, \ldots, b_s; q, dD_q \right) \) on both sides of (3.2), we get

\[
\sum_{k=0}^{\infty} \frac{(a; q)_k}{(q; q)_k} {}_r\Phi_s \left(\frac{a_1, \ldots, a_r}{b_1, \ldots, b_s; q, dD_q} \right) \left\{ x^k \frac{(xb; q)_\infty}{(xc; q)_\infty} \right\} \\
= {}_r\Phi_s \left(\frac{a_1, \ldots, a_r}{b_1, \ldots, b_s; q, dD_q} \right) \left\{ \frac{(ax, xb; q)_\infty}{(x, xc; q)_\infty} \right\}.
\] (3.3)

By using (2.4), we get

\[
\sum_{k=0}^{\infty} \frac{(a; q)_k}{(q; q)_k} {}_r\Phi_s \left(\frac{a_1, \ldots, a_r}{b_1, \ldots, b_s; q, dD_q} \right) \left\{ x^k \frac{(xb; q)_\infty}{(xc; q)_\infty} \right\} \\
= x^k \frac{(xb; q)_\infty}{(xc; q)_\infty} \sum_{i,j \geq 0} \frac{W_{i+j} (b/c; q)_i (xb; q)_{i+j}}{(q; q)_i (xb; q)_{i+j}} \left[(-1)^{i+j} q^{i+j/2} \right]^{1+s-r} (xc; q)_j \left[k \right] (dc)^i \left(\frac{d}{x} \right)^j
\] (3.4)

and using (2.2), we get

\[
{}_r\Phi_s \left(\frac{a_1, \ldots, a_r}{b_1, \ldots, b_s; q, dD_q} \right) \left\{ \frac{(ax, xb; q)_\infty}{(x, xc; q)_\infty} \right\} \\
= \frac{(xa; q)_\infty}{(x; q)_\infty} \sum_{i,j \geq 0} \frac{W_{i+j} (b/c; q)_i (xb; q)_{i+j}}{(q; q)_i (xb; q)_{i+j}} \left[(-1)^{i+j} q^{i+j/2} \right]^{1+s-r} \frac{(a, xc; q)_j}{(q, xa; q)_j} (dc)^i d^j.
\] (3.5)

Substituting (3.4) and (3.5) into (3.3) the proof completed.

• If \(d = 0 \) in equation (3.1), we obtain Cauchy identity.
• If \(b = 0 \) and then \(c = 0 \) in equation (3.1), we obtain the following formula:

Corollary 3.1.3

\[
\sum_{k=0}^{\infty} \frac{(a;q)_k}{(q;q)_k} \sum_{j=0}^{\infty} W_j \binom{k}{j} (-1)^j q^{j(\frac{1}{2})} d^j x^{k-j} = \frac{(xa;q)_\infty}{(x;q)_\infty} \sum_{j=0}^{\infty} \frac{W_j \, (a;q)_j}{(q;q)_j (xa;q)_j} (-1)^j q^{j(\frac{1}{2})} d^j .
\] (3.6)

• If \(r = s = 0, a = 0, x \to xt \) and \(d \to yt \) in equation (3.6), we get the generating function for Cauchy polynomials \(P_k(x,y) \) (1.26).

• If \(r = 1, s = 0 \) and \(a = 0 \) then replacing \(x, a_1, d \) by \(xt, y, t \) respectively, in equation (3.6), we get on the generating function for bivariate Rogers-Szeg\text{"{o}} polynomials \(h_k(x,y|q) \) (1.25).

• If \(r = s + 1, a = 0, x \to yt \) and then \(d \to xt \) in equation (3.6), we get the generating function for the generalized Al-Salam–Carlitz \(q \)-polynomials \(\phi^{(a,b)}_n(x,y) \) (1.26).

3.2 Generalization of Heine’s Transformation of \(\phi_1 \) Series

Theorem 3.2 (Generalization of Heine’s transformation of \(\phi_1 \) series). Let Heine’s identity be defined as in (1.11), then

\[
\sum_{k=0}^{\infty} \frac{(a,b;q)_k}{(q,c;q)_k} z^k \sum_{n,l=0}^{\infty} \frac{W_{n+l} \, (zq^k)}{(a;b)_n \, (c;q)_n} \binom{k}{i} (zq^k)^i \left(\frac{-1}{2} \right)^{n+i} q^{\frac{n(i+1)}{2}} + \frac{(dbq)^n}{(d/z)^i}.
\] (3.7)

Proof. Rewrite Heine’s formula as follows.

\[
\sum_{k=0}^{\infty} \frac{(a,b;q)_k}{(q,c;q)_k} z^k = \frac{(c/b;q)_\infty}{(zq^k;q)_\infty} \sum_{k=0}^{\infty} \frac{(b;q)_k}{(q;q)_k} (c/b)^k \frac{(abz/c;q)_\infty}{(zq^k;q)_\infty}.
\] (3.8)

Applying the general operator \(\phi_s \left(\begin{array}{cc} a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array} ; q, DD_q \right) \) to both sides of the equation (3.8) gives:

\[
\sum_{k=0}^{\infty} \frac{(a,b;q)_k}{(q,c;q)_k} \phi_s \left(\begin{array}{cc} a_1, \cdots, a_r \\ b_1, \cdots, b_s ; q, DD_q \end{array} \right) \left(\frac{z^k}{(zq^k;q)_\infty} \right).
\]
Using (2.7), we get
\[
\sum_{k=0}^{\infty} (\frac{b; q)_k}{(q; q)_k} (\frac{c/b; q)_k}{(z/bq^k; q)_k} \Phi_1 \left(\frac{a_1, \ldots, a_r}{b_1, \ldots, b_s; q, dD_q} \middle| \frac{abz/c; q)_k}{(zbq^k, z; q)_k} \right).
\] (3.9)

and using (2.4), we get
\[
\sum_{k=0}^{\infty} \frac{z^k}{(zbq^k, z; q)_k} \sum_{n, l \geq 0} W_{n+l} \left(\frac{k!}{q; q)_n \left(zbq^k; q \right)_l \left(-1 \right)^{n+l} q^{\frac{n+l}{2}} \right)^{1+s-r} \left(dbq^k \right)^n d^n \left(\frac{dab/c}{q^k} \right)^i. \] (3.10)

Substituting (3.10) and (3.11) in equation (3.9) the proof is completed.

- If \(r = s + 1, a = 0, z \rightarrow yt, d \rightarrow xt, c \rightarrow cb \) and then \(b = 0 \) in equation (3.7), we get the generating function for the generalized Al-Salam–Carlitz q-polynomials \(\phi_n^{(a,b)}(x,y) \) (1.26).

- If \(r = 1, s = 0 \) in equation (3.7), we get the following identity:

Corollary 3.2.4
\[
\sum_{k=0}^{\infty} \frac{(a,b, db; q)_k}{(q,c, a_1 db; q)_k} z^k \frac{3\Phi_1}{(a_1 dbq^k; q)_k} \left(q^{-k}, a_1, zbq^k ; q, dqb^k / z \right) = \frac{(a_1 d, db, c/b, zb; q)_k}{(d, a_1 db, c, z; q)_k} \sum_{k=0}^{\infty} \frac{(abz/c, q)_k}{q, zb; q)_k} (c/b)_k^k \frac{3\Phi_2}{(q^{-k}, a_1, z; abz/c, a_1 d; q, dqb^k / c)}.
\]

3.3 Generalization of q-Pfaff-Saalschütz Sum

Theorem 3.3 (Generalization of q-Pfaff-Saalschütz sum). Let q-Pfaff-Saalschütz sum be defined as in (1.9), then
\[
\sum_{k=0}^{\infty} \frac{(q^n, a, b; q)_k}{(q, c, abq^{-n}/c; q)_k} q^k \sum_{i,j \geq 0} W_{i+j} \left(\frac{(q^{-n+k}, q)_i}{(abq^{-n+k}/c; q)_i} \right) \left(yq^{-k}, abq/c; q \right)_j \left(-1 \right)^{i+j} q^{i+j} \left(dbq/c \right)^i (dq^k)^j
\]
Proof. Multiplaying \(q \)-Saalschütz identity (1.9) by \((ay; q)_\infty\), we have

\[
\sum_{k=0}^{\infty} \left(\begin{array}{c}
q^{-n}k \\
q^n, b; q \end{array} \right)_k q^k \frac{(ay, abq^{1-n+k}/c; q)_\infty}{(aq^k, abq/c; q)_\infty} = \frac{b^n(c/b; q)_n (aq^{1-n}/c, ay; q)_\infty}{(c; q)_n (a, aq/c; q)_\infty}.
\]

Applying the general operator \(\Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, dD_q \end{array} \right) \) to both sides of equation (3.13) gives:

\[
\sum_{k=0}^{n} \left(\begin{array}{c}
q^{-n}k \\
q^n, c; q \end{array} \right)_k q^k \Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, dD_q \end{array} \right) \left(\begin{array}{c}
(ay, abq^{1-n+k}/c; q)_\infty \\
(aq^k, abq/c; q)_\infty \end{array} \right) = \frac{(-c)^n q^n(a)_n}{(c; q)_n} \Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, dD_q \end{array} \right) \left(\begin{array}{c}
(aq^{1-n}/c, ay; q)_\infty \\
(a, aq/c; q)_\infty \end{array} \right).
\]

Using (2.2), we get

\[
\frac{(ay, abq^{1-n+k}/c; q)_\infty}{(aq^k, abq/c; q)_\infty} \sum_{k=0}^{n} \left(\begin{array}{c}
q^{-n}k \\
q^n, c; q \end{array} \right)_k q^k \Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, dD_q \end{array} \right) \left(\begin{array}{c}
(ay, abq^{1-n+k}/c; q)_\infty \\
(aq^k, abq/c; q)_\infty \end{array} \right) = \frac{(-c)^n q^n(a)_n}{(c; q)_n} \Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, dD_q \end{array} \right) \left(\begin{array}{c}
(aq^{1-n}/c, ay; q)_\infty \\
(a, aq/c; q)_\infty \end{array} \right).
\]

Substituting (3.12) and (3.16) in equation (3.14), the proof is completed.

If \(n = \infty \) in equation (3.12), we get a generalization for \(q \)-Gauss sum (1.10) as follows:

Corollary 3.3.5 (Generalization of \(q \)-Gauss sum). Let \(q \)-Gauss sum be defined as in (1.10), then

\[
\sum_{k=0}^{\infty} \left(\begin{array}{c}
q^n, b; q \end{array} \right)_k \frac{(c/ab)^k}{(q, c; q)_k} \Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, d/ab \end{array} \right) = \frac{(c/ab)^k}{(q, c/ab; q)_k} \Phi_S \left(\begin{array}{c}
a_1, \ldots, a_r \\
b_1, \ldots, b_s; q, d/ab \end{array} \right).
\]
\[
\frac{(c/a, c/b; q)_{\infty}}{(c, c/ab; q)_{\infty}} \sum_{i,j \geq 0} \frac{W_{i+j}}{(q; q)_i} \frac{W_{i+j}}{(q; q)_j} \frac{(yc/q; q)_i}{(ay; q)_{i+j}} \frac{(aq/c; q)_j}{(q; q)_j} \\
\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} (dq/c)^i (d/a)^j \right].
\]

- If \(b = \infty \) in equation (3.12), we get a generalization for \(q \)-Chu-Vandermonde sum (1.7) as follows:

Corollary 3.3.6 (Generalization to \(q \)-Chu-Vandermonde sum (1.7)). Let \(q \)-Chu-Vandermonde sum be defined as in (1.7), then

\[
\sum_{k=0}^{n} \frac{(q^{-n}, a; q)_k}{(q, c; q)_k} (cq^n/a)^k \sum_{i,j \geq 0} \frac{W_{i+j}}{(q; q)_i} \frac{W_{i+j}}{(q; q)_j} \frac{(q^{-n+k}; q)_i}{(q; q)_i} \frac{(yq^{-k}; q)_j}{(q; q)_j} \\
\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} (dq^n)^i (dq)^j \right] = \frac{(c/a; q)_n}{(c; q)_n} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} W_{i+j} \frac{(yc/q; q)_i}{(aq/c; q)_j} \frac{(q^{1-n}/c, aq/c; q)_j}{(q, q^{1-n}/c; q)_j} \\
\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} (dq/c)^i (d/a)^j \right].
\]

- If \(b = 0 \) in equation (3.12), we get a generalization for \(q \)-Chu-Vandermonde sum (1.8) as follows:

Corollary 3.3.7 (Generalization to \(q \)-Chu-Vandermonde sum (1.8)). Let \(q \)-Chu-Vandermonde sum be defined as in (1.8), then

\[
\sum_{k=0}^{n} \frac{(q^{-n}, a; q)_k}{(q, c; q)_k} q^k r_{s+1} \frac{\phi_{r+1}}{\phi_{s+1}} \left(\begin{array}{c}
\alpha_1, \ldots, \alpha_r, yq^{-k} \\
b_1, \ldots, b_s, ay
\end{array} ; q, dq^k \right) \\
= \frac{(c/a; q)_n}{(c; q)_n} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} W_{i+j} \frac{(yc/q; q)_i}{(ay; q)_{i+j}} \frac{(q^{1-n}/c, aq/c; q)_j}{(q, aq^{1-n}/c; q)_j} \\
\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} (dq/c)^i (d/a)^j \right].
\] \hspace{1cm} (3.17)

- If \(r = s = 0 \) and \(y = 0 \) in equation (3.17) then using (1.6), we get the following identity:

Corollary 3.3.8

\[
\phi_2^2 \left(\begin{array}{c}
q^{-n}, a, 0 \\
c, d
\end{array} ; q, q \right) = \frac{(dq/c; q)_{\infty}}{(d; q)_{\infty}} \frac{(c/a; q)_n}{(c; q)_n} \frac{(q^{1-n}/c, aq/c; q)}{(aq^{1-n}/c, dq/c; q, d)}
\]

- If \(r = 2, s = 1 \) and \(y = 0 \) in equation (3.17), we get Theorem 17 obtained by Li and Tan [9] (equation (1.22)).
• If \(r = 2, s = 1, y = 0 \) and setting \(a_1 = q^{-N} \) in equation ??, then using equations (1.1) and (1.7), we get Theorem 3.1 obtained by Zhang and Yang [15] (equation (1.19)).

• If \(r = 2, s = 1, y = 0, a_1 = q^{-N} \) and \(a = 1 \) in equation (3.17), we get Corollary 3.2 obtained by Fang [5] (equation (1.20)).

Conclusions

1. Many operators can be obtained by assigning some special values to the generalized \(q \)-operator

\[
\Phi_r \left(a_1, \cdots, a_r, b_1, \cdots, b_s; q, cD_q \right)
\]

2. We generalized some well-known \(q \)-identities, such as Cauchy identity, Heine's transformation formula and the \(q \)-Pfaff-Saalschütz summation formula.
References

[13] H.L. Saad and R.H. Jaber, Application of the Operator $\phi\left(a, b, c; d, e; x, y|q\right)$ for the Polynomials $Y_n(a, b, c; d, e; x, y|q)$, *TWMS J. App. and Eng. Math.*, (2020), accepted.

$$q$$-

تطبيقات المؤثر $$_r \Phi_\nu$$ في المتتابقات.

حسام لوتي سعد
حسن حميل حسن

قسم الرياضيات ، كلية العلوم ، جامعة البصرة ،
البصرة ، العراق

المستخلص:

في هذا البحث، أنشأنا المؤثر العام $$_r \Phi_\nu$$، ثم وجدنا بعض متتابقاته التي سيتم استخدامها لتقسيم بعض متتابقات q-

لمثل متتابقة كوشي ، وصيغة تحويل هاين ، وصيغة جمع باف- سلسوتس. من خلال إعطاء قيم خاصة للمعلمات في المتتابقات التي حصلنا عليها ، تم الحصول على بعض النتائج الجديدة و/أو تم إعادة برهان البعض الآخر.